翻訳と辞書
Words near each other
・ Lippo Plaza
・ Lippo Vanni
・ Lippo Village International Formula Circuit
・ Lippoldswilen
・ Lipponen I Cabinet
・ Lipponen II Cabinet
・ Lipporn
・ Lipprechterode
・ Lipps
・ Lipps Inc.
・ Lipps Island
・ Lipps, Virginia
・ Lippstadt
・ Lippstadt Airfield
・ Lippstadt station
Lipps–Meyer law
・ Lippy Lipshitz
・ Lippy the Lion & Hardy Har Har
・ Lippy's Garden
・ Lippó
・ Liprandi
・ Liprin-alpha-1
・ Lips (KAT-TUN song)
・ Lips (surname)
・ Lips (video game)
・ Lips Are Movin
・ Lips Like Morphine
・ Lips Like Sugar
・ Lips of an Angel
・ Lips of Lurid Blue


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lipps–Meyer law : ウィキペディア英語版
Lipps–Meyer law
The Lipps–Meyer law, named for Theodor Lipps (1851–1914) and Max Friedrich Meyer (1873–1967), hypothesizes that the closure of melodic intervals is determined by "whether or not the end tone of the interval can be represented by the number two or a power of two",〔Meyer, M.F. (1929). "The Musician's Arithmetic", ''The University of Missouri Studies'', January.〕 in the frequency ratio between notes (see octave).
"The 'Lipps–Meyer' Law predicts an 'effect of finality' for a melodic interval that ends on a tone which, in terms of an idealized frequency ratio, can be represented as a power of two."〔Robert Gjerdingen, "The Psychology of Music", (2002). ''The Cambridge History of Western Music Theory'', Th. Christensen ed., p.963. ISBN 978-0-521-62371-1.〕
Thus the interval order matters — a perfect fifth, for instance (C,G), ordered , 2:3, gives an "effect of indicated continuation", while , 3:2, gives an "effect of finality".
This is a measure of interval strength or stability and finality. Notice that it is similar to the more common measure of interval strength, which is determined by its approximation to a lower, stronger, or higher, weaker, position in the harmonic series.
The reason for the effect of finality of such interval ratios may be seen as follows. If F = h_2/2^n is the interval ratio in consideration, where n is a positive integer and h_2 is the higher harmonic number of the ratio, then its interval can be determined by taking the base-2 logarithm I=12log_2(h_2/2^n)=12log_2(h_2) - 12n. The difference of these terms is the harmonic series representation of the interval in question (using harmonic numbers), whose bottom note 12n is a transposition of the tonic by ''n'' octaves. This suggests why descending interval ratios with denominator a power of two are final. A similar situation is seen if the term in the numerator is a power of two.〔Krumhansl, Carol L. Cognitive Foundations of Musical Pitch. New York: Oxford UP, 2001. 122. Print〕 〔Wright, David. Mathematics and Music. Providence, RI: American Mathematical Society, 2009. 53. Print.〕
==Sources==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lipps–Meyer law」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.